Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models
نویسندگان
چکیده
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.
منابع مشابه
Deterministic Measurement of Reliability and Performance Using Explicit Colored Petri Net in Business Process Execution Language and Eflow
Today there are many techniques for web service compositions. Evaluation of quality parameters has great impact on evaluation of final product. BPEL is one of those techniques that several researches have been done on its evaluation. However, there are few researches on evaluation of QoS in eflow. This research tries to evaluate performance and reliability of eflow and BPEL through mapping them...
متن کاملTime Series Petri Net Models - Enrichment and Prediction
Operational support as an area of process mining aims to predict the temporal performance of individual cases and the overall business process. Although seasonal effects, delays and performance trends are well-known to exist for business processes, there is up until now no prediction model available that explicitly captures this. In this paper, we introduce time series Petri net models. These m...
متن کاملPrediction of Net Primary Production Changes in Different Phytogeographical Regions of Iran from 2000 to 2016, Using Time Series Models
Vegetation cover is an important component of terrestrial ecosystems that changes seasonally. Accurate parameterization of vegetation cover dynamics through developing indicators of periodic patterns can assist our understanding of vegetation-climate interactions. The current study was conducted to investigate and model vegetation changes in some phytogeographical regions of Iran including, Kha...
متن کاملMapping Sequence diagram in Fuzzy UML to Fuzzy Petri Net
This ability in fuzzy UML, practically leaves the customers and market’s need without response in this important and vital area. Here, the available sequence diagrams in fuzzy UML will map into fuzzy Petri net. However, the formal models ability will be added to the Semi-formal fuzzy UML. This formalization will add the automatic processing ability to the Semi-formal fuzzy UML. Further more, t...
متن کاملFormal approach on modeling and predicting of software system security: Stochastic petri net
To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by the evaluation capability of Stochastic Petri Net and the computing power of Markov chain. Each...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014